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Spatial manipulation of current flow in graphene could be achieved through the use of a tilted p-n junction.
We show through numerical simulation that a pseudo-Hall effect �i.e., nonequilibrium charge and current
density accumulating along one of the sides of a graphene ribbon� can be observed under these conditions. The
tilt angle and the p-n transition length are two key parameters in tuning the strength of this effect. This
phenomenon can be explained using classical trajectory via ray analysis, and is therefore relatively robust
against disorder. Lastly, we propose and simulate a three terminal device that allows direct experimental access
to the proposed effect.
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I. INTRODUCTION

A semiconductor p-n junction where both sides of the
junction are biased such that their Fermi surfaces are identi-
cal could potentially serve as an electron analog of the Ve-
selago lens.1 Graphene, a zero band-gap two-dimensional
semiconductor with Dirac-type linear energy dispersion,2–5 is
an ideal medium for realizing this physical analogy. As re-
cently advocated by Cheianov et al.,6 an abrupt and sym-
metrically biased graphene p-n junction could function as an
electron focusing device. An electronic superlattice of cas-
cading p-n junctions could serve as an electron beam col-
liminator as elaborated by Park et al.7 In this paper, we pro-
pose utilizing a tilted p-n junction to manipulate the current
flow such that charge carriers preferably propagate along one
edge of the sample using a setup as illustrated in Fig. 1�a�.
This is achieved by controlling the following interface prop-
erties: �i� tilt angle � and �ii� the extent of the p-n transition
region, D. The possibility to manipulate the spatial distribu-
tion of the current density in graphene opens the door for
novel electronic device concepts.

Experimentally, graphene p-n junctions are created
through electrical means via a top/bottom gating
scheme.10–12 Carrier transport across a conventional
graphene p-n junction exhibits highly angular selective
behavior.12–15 For example, in a symmetric p-n junction, the
transmission probability in the absence of magnetic field is

given by T0�km��e−�km
2 D/2kf,13 where kf/m is the Fermi and

transverse wave vector, respectively. When km=0, the trans-
port across the p-n junction would be reflectionless, an hall-
mark of Klein tunneling.14 Therefore, by geometrically tilt-
ing the graphene p-n junction at an angle � as shown in Fig.
1, one expects that the maximum transmission now occurs
for the transverse mode km�kf sin �. Analogous to this
physical situation is the problem of transport across a con-
ventional p-n junction in the presence of a magnetic field, B.
In the latter case, one uses the Lorentz force to modify the
carrier’s trajectory. In the limit of large device width, one can
impose the usual periodic boundary conditions and express
the eigenstates as �m�r�=eikmy��x ,B ,km�.16 The Wentzel-
Kramers-Brillouin �WKB� transmission probability, TB�km�,
in the presence of a B field is derived by Shytov et al.8

Figures 1�b�–1�e� plots TB�km� for different B field strength.

Reflectionless transmission now occurs for the mode km
�kf sin �B, where �B=sin−1�v fB /E�. The polar plots exhibits
the characteristic leaf-shaped feature which rotates in the
presence of magnetic field. The thickness of the leaf defines
the angular bandwidth ��� of the p-n junction. Decreasing �
with increasing magnetic field is responsible for the degra-
dation in conductance observed recently in experiments.9

Suppose the device is large and the effects from the bound-
aries are negligible, the transmission probability through a
tilted junction could be described by a simple coordinate
transformation, i.e., T0��m−��, as depicted in Figs. 1�b�–1�e�.
Both cases exhibit the signatures of a transverse current, i.e.,
Hall current in the magnetic field case. In this paper, we want
to address the question, “could one engineer a pseudo-Hall
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FIG. 1. �Color online� �a� Schematic of a tilted p-n junction
device built on a graphene ribbon. The top and bottom gate allows
the tunability of the electron/hole carrier density on each side of the
junction. Tilt angle defined as �. ��b�–�e�� Polar plots of the carrier
transmission probability across a symmetric graphene p-n junction
for different values of magnetic field using the WKB model out-
lined in Ref. 8 �solid lines�. The calculation is done for an experi-
mentally typical p-n junction with transition width of 100 nm and a
built-in potential of 0.4 eV, i.e., � f = 	0.2 eV for the n / p regions
�Ref. 9�. Similar plots for different � at B=0 T using WKB are also
shown �dashed lines�.
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effect in a graphene waveguide via a tilted p-n junction as
shown in Fig. 1�a�?”

II. THEORY AND METHODS

The theoretical model we employ in this work is based on
the Landauer-Büttiker formalism where the transmission
function is computed within the framework of the nonequi-
librium Green’s function method.17,18 The device Hamil-
tonian is described within the tight-binding formalism,19,20

H = 
iviai
†ai + 
ijtai

†aj , �1�

where ai
† /ai are the creation/destruction operator at each

atomic site i. vi is the on-site potential energy, to be con-
trolled by the top/bottom gates. Additional contributions due
to local magnetization at the ribbon edges21 are not consid-
ered in this work, since our ribbon’s width are relatively
large. The open boundary condition for the quantum trans-
port problem is embodied by contacts’ self-energies, 
s/d,
solved using an iterative scheme outlined in Ref. 22. The
device Green’s function is then computed through,

G�� f� = �� f − H − 
s − 
d�−1, �2�

where � f is the Fermi energy. However, direct matrix inver-
sion of Eq. �2� usually proves to be computationally prohibi-
tive. Therefore, one commonly resorts to recursive type tech-
niques such as the recursive Green’s function23,24 or the
renormalization method.25 In this work, we obtain the charge
and current density of our device by combining familiar con-
cepts from the recursive Green’s function and the renormal-
ization method. The detailed methodology is outlined in Ap-
pendix A.

After solving for G�� f�, we can compute the mode re-
solved transmission probability function Tnegf

mn at � f via,

Tnegf
mn = Tr��s,mG�d,nG†� , �3�

where m /n denotes the modes in the source/drain contacts,
respectively. �s/d are known as the contacts’ broadening
functions which can be obtained from 
s/d for each respec-
tive mode in the contacts, i.e., �s/d= i2 Im�
s/d�. The mode-
to-mode transmission function, Tmn, is a useful quantity for
analyzing the transport effects in the modal space in the pres-
ence of device nonhomogeneities �see, e.g., Ref. 26�. Appen-

dix B describes the procedure in obtaining the mode resolved
contact self-energy 
s,m in armchair edge graphene ribbon.

III. RESULTS

The graphene device that we investigate in this work is a
100-nm-wide ribbon with armchair edges. For an armchair
edge ribbon, the scattering states for an incoming source
mode can be written as,27

�m�r� =
s�k�
�2W

� �
K�km� − 
K��− km��eikxx, �4�

where 
K�km�=eiK·reikmy and K /K� denotes the two in-
equivalent Dirac points in the graphene’s Brillouin zone. s�k�
being the pseudospin, describing the A/B sublattice wave
function. Since a graphene p-n junction is analogous to a
negative refractive material in optics,6 it is useful to define an
angular representation for the contact modes in order to fa-
cilitate discussion using simple ray analysis. For the source/
drain modes, we define �m/n=sin−1�km/n /kf�, respectively,
where n labels the modes in the drain. Figure 2 plots the
mode-to-mode transmission function Tnegf

mn for various tilted
p-n junctions ��=0° ,15° ,30° ,45°� biased symmetrically
with a built-in potential of 0.8 eV, i.e., � f =0.4 eV on each
side. When the p-n interface tilt angle is zero, the solutions
satisfy the “Snell law” given by �m=�n �see Fig. 2�a��. When
��0, the solutions are generally described by:

�n = 	�m + 2�: K

�m − 2�: K�

 �5�

as demonstrated in Fig. 2�b�. Each source mode is an equal
weight superposition of scattering states from K and K� val-
leys propagating in 	�m direction, respectively. When �
�0, these two scattering states get scattered differently, end-
ing up in two different drain modes according to Eq. �5�.
However, when � exceeds a maximum tilt, i.e., �max, the
solutions described by Eq. �5� fall outside of the available
drain modes and new solutions emerge �see Fig. 2�d��. We
find,

�max � 1
2max��n� , �6�

which can be easily deduced from Fig. 2 �for a 100 nm
armchair edge ribbon, max��n��72°�. We will revisit this
point later.
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FIG. 2. �Color online� NEGF derived mode-to-mode transmission probability function log2�Tnegf��m ,�n�� for a symmetric p-n junction
device biased at � f =0.4 eV, for tilt angles of �=0°, 15°, 30°, 45°, respectively. The device width is 100 nm and the p-n transition length
D=10 nm.
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Summing over the drain modes, we obtained the transmis-
sion probability due to an incoming mode from the source:
Tnegf��m�=
nTnegf

mn . Figure 3 is the polar plot of Tnegf��m� for
symmetric p-n junction devices with different �. The WKB
plots are obtained using the usual WKB formula,13 and treat-
ing the two scattering states from each mode independently.
When � increases gradually from zero, the single leaf
evolves into a doublet leaf structure as shown in Fig. 3�b�.
This is because Klein tunneling which originally occurs for
the mode �m�0, now occurs for the modes �m� 	�. For the
latter, one would expect the maximum transmission probabil-
ity to be � 1

2 , since only one of the pair of scattering states
from each mode satisfy the condition for Klein tunneling.
However, the NEGF result deviates from this simple picture,
showing a notably higher maximum transmission than 1

2 . The
reason for this discrepancy is due to multiple scattering with
the sidewall, i.e., sidewall enhanced transmission �SWET�.
With further increase in �, this doublet leaf structure evolves
into some triplet leaf feature �new solutions arise when �
��max� and eventually the polar plot becomes noisy �not
shown�. Increasing of � extends the physical longitudinal
distance of the tilted gate, thereby enhancing the mixing of
the various transverse modes.

A. Junction conductance

Figure 4�a� plots the p-n junction normalized conductance
�� /�o� as a function of tilt angle � for different values of D,
where �o is the conductance when �=0°. The following key
observations can be made; �i� � /�0 exhibits an initial in-
crease with � and then decreases prominently when � ex-
ceeds a threshold angle, herein denoted as �th, and �ii� the
occurrence of �th can be delayed by employing a larger D.
We also checked that the same trends hold true for devices
with different widths, � f and edge configurations �i.e., zigzag
edge ribbon shown in Fig. 4�b��. The initial increase in con-
ductance with � is a SWET phenomenon whose signature
becomes more prominent with larger �. We shall discuss the
plausible explanation for the existence of �th, beyond which
� /�0 degrades. In the transmission polar plot �Fig. 1�, in-
creasing � rotates the leaf by a similar amount. The threshold
of conductance degradation occurs at large enough � such
that some of the states within the angular bandwidth would
be back reflected into the source, i.e.,

�th � 1
2 �� − �� , �7�

where � is the angular bandwidth of the transmission func-
tion. Since � is larger for smaller D, �th is also smaller. This
explains the general trend we observe in our numerical cal-
culation in Fig. 4. Let us compute �th for the set of results in
Fig. 4�a�. Defining the � to be the bandwidth where trans-
mission probability is �0.5, we have ��90°, 75°, 49°, and
31° when D=0, 2.5, 5, and 10 nm, respectively. This yields
�th�45°, 53°, 66°, and 74°, respectively, in good agreement
with the numerical result we obtained in Fig. 4�a�.

For device with D=10 nm, the junction conductance at
�=70° can exceed twice its value at �=0°, as shown in Fig.
4�a�. From a device perspective, this means that one could
deliberately tilt the interface angle to enhance the on-state
current. This could be useful for engineering a band-to-band
tunneling transistor.28 Next, we examine the robustness of
this effect in the presence of sidewall disorder. Figure 4�b�
plots the absolute junction conductance of the D=10 nm
device for the case with a perfect sidewall and one where the
sidewall exhibits a rms roughness of one atomic layer. Evi-
dently, the SWET phenomenon is highly sensitive to the
characteristic of the sidewall. Therefore, chemically derived
graphene ribbons29 with smooth edges are needed to experi-
mentally observe these large conductance modulation with
tilt angle. Device widths of the same order as the carrier’s
phase coherence length L
 is also required for SWET to
occur. From Fabry Perot experiments,30 L
�100 nm is
expected.

B. Spatial current distribution

Figures 5�a�–5�f� shows the nonequilibrium spatial cur-
rent intensity plots of a tilted graphene p-n junction for dif-
ferent transition lengths and tilt angle. The current profile
populates preferentially along the sides of the device, analo-
gous to the Hall effect. The following key observations can
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be made about Figs. 5�a�–5�f�; �i� edge populated current is
observed to be more prominent with increasing D and �ii�
this effect can be enhanced by increasing � until � exceeds a
certain angle �see Fig. 5�f��. The former effect is attributed to
the suppression of normal modes current �i.e., Tnegf��m�0��
as a result of larger D.

The appearance of edge populated current is a direct con-
sequence of the negative refractive index property of the
graphene p-n junction. Each propagating mode from the
source follows a classical trajectory into the drain contact
according to Eq. �5�. For example, when �=15°, the incom-
ing source modes �m� 	15° would contribute the most cur-
rent �see Figs. 3�b� and 2�b��. The mode �m�15° would end
up in the drain modes �n�45° �K� and �n�−15° �K��,
where the latter scattering state has a larger current contribu-
tion. �¯ � indicates the valley in which the incoming scatter-
ing state is residing. On the other hand, �m�−15° would end
up in the drain modes �n�15° �K� and �n�−45° �K��,
where the former has a larger contribution. Both scattering
states, �n�−15° �K�� and �n�15° �K�, are propagating in
the same direction, since K=−K�. This leads to the effect of
pseudo-Hall current. However, when ���max, new scattering
states which do not follow the classical trajectories described
by the Snell law �i.e., Eq. �5�� arises. They are responsible

for overwhelming the edge populated currents, resulting in
their disappearance for the device with �=45° �see Fig. 5�f��.
Unlike the SWET, the phenomenon of edge populated cur-
rent is fairly robust against various disorder such as edge
roughness and p-n interface roughness as shown in Figs. 5�d�
and 5�e�. One should be able to measure this effect
experimentally.31

We consider a possible experimental setup that allows di-
rect access to the proposed effect as shown in Fig. 6�a�. The
drain is partitioned into two contacts through an upper/lower
stub, with currents denoted as I1 / I2, respectively. Figure 6�b�
plots the ratio I1 / I2 as a function of �. The current asymme-
try has an optimum value of 300% at ��25° as shown.
Through further device optimization, one should be able to
engineer a device with a larger asymmetry ratio and achieve
a semi-unipolar behavior through I2.

In conclusion, we had performed a numerical study of a
tilted graphene p-n junction, provides a detailed physical un-
derstanding of its transport properties, and highlighted the
possibility of manipulating the current to flow along the
edges of the waveguide.
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APPENDIX A: RENORMALIZATION
AND RECURSIVE METHODS

This appendix documents the procedure we used for the
computation of spatial charge/current density profiles in the
device. We consider a graphene ribbon with armchair edges
as illustrated in Fig. 7. Device is infinite along x, the trans-
port direction, and each supercell is represented by the dotted
rectangular box. The Hamiltonian, H, describing the
graphene ribbon is formulated by treating only the nearest-
neighbor interaction between the pz orbitals.19,20 Usually,
this coupling energy is assumed to be tc=3 eV. By the same
token, the supercell would only interact with the adjacent
supercells. The interaction of a supercell with its neighboring
cell on the right/left is represented by � /�†, respectively,
while the intracell interaction is denoted by �. � and � are
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matrices of size ns�ns, where ns is the number of basis
functions in a supercell. H is the sum of these coupling en-
ergies and the electrostatic potential U�r�.

From a practical point of view, we are only interested in
the scattering solutions within the central device domain, de-
noted by �0. Let HL, H0, and HR be the Hamiltonian descrip-
tion of �L, �0, and �R, respectively. The interaction between
the HL and H0 blocks is denoted by �̃. Through simple alge-
bras, one can write the retarded Green’s function at � f �Fermi
energy� in �0 as follows:17

G�r,r�� = ��� f + i��I − H0 − 
s − 
d�−1 � A−1. �A1�


s/d are known as the contact retarded self-energy and are
defined as follows:


s = �̃†gL
r �̃ gL

r = ��� f + i��I − HL�−1,

�A2�

d = �̃gR

r �̃† gR
r = ��� f + i��I − HR�−1.

The numerics for Eq. �A2� immediately becomes tractable
when one notice that we only need the elements of gL/R

r

which are adjacent to the �R��0 and �L��0 boundaries.
“These surface elements,” which are a smaller subset of gL/R

r ,
are usually denoted by the surface Green’s function matrices
gL/R

s of size ns�ns. An iterative scheme is commonly used to
compute gL/R

s .22 Once the contact retarded self-energies are
determined, the device Green’s function in Eq. �A1� can be
computed by directly inverting the matrix A, if computa-
tional resource is not a limiting factor. However, it usually
prove to be computationally prohibitive. Therefore, one com-
monly resorts to recursive type techniques such as the recur-
sive Green’s function23,24 or the renormalization method.25 In
this appendix, we outlined a methodology which combines
familiar concepts from the recursive Green’s function and the
decimation method in the computation of the various non-
equilibrium Green’s functions, from which we can obtain the
charge and current density of our device.

Suppose that we are only interested in the real-space re-
solved charge and current density for the supercell j as
shown in Fig. 7. The first step involves getting rid of the
slices s=2,3 , . . . ,h , l , . . . ,n−2,n−1 from the system of
equations stipulated in Eq. �A1�, made possible by the trigo-

nal nature of matrix A. Equation �A1� now becomes ḠĀ= I,

where the left-hand side of this equation is explicitly written
as,

�
g11 g1i g1j g1k g1n

gi1 gii gij gik gin

gj1 gji gjj gjk gjn

gk1 gki gkj gkk gkn

gn1 gni gnj gnk gnn


�
a11 a1i 0 0 0

ai1 aii aij 0 0

0 aji ajj ajk 0

0 0 akj akk akn

0 0 0 ank ann


 .

�A3�

In this work, the matrix elements of Ā are systematically
derived. The elements not affected by the decimation process
are ajj = �A� j

j, aij = �A� j
i, aji= �A�i

j, ajk= �A�k
j , and akj = �A� j

k �the
upper/lower index denotes row/column, respectively�. aii and
ai1 are obtained through a set of recursive formulas. We be-
gan with the initialization aii

0 = �A�i
i and ai1

0 =�†. The recursive
formulas for aii and ai1 are,

aii
u = aii

u−1 − ai1
u−1pl

u�ai1
u−1�†,

ai1
u = − ai1

u−1pl
u�†, �A4�

pl
u = ��A� j−u−1

j−u−1 − �pl
u−1�†�−1,

where pl
u=0. The desired solutions are aii=aii

j−3 and ai1
=ai1

j−3. Note that a different set of recursive formula is needed
if the intercell coupling is different for each supercell. akk
and akn are obtained through a similar set of recursive for-
mulas. We began with the initialization akk

0 = �A�k
k and akn

0 =�.
The recursive formulas for akk and akn are,

akk
u = akk

u−1 − akn
u−1pr

u�akn
u−1�†,

akn
u = − akn

u−1pr
u� , �A5�

pr
u = ��A� j−u−1

j−u−1 − �†pr
u−1��−1,

where pl
u=0. The desired solutions are akk=akk

n−j−2 and akn

=akn
n−j−2. a11 and a1i are obtained through a similar set of

recursive formulas. We began with the initialization a11
0

= �A�1
1 and a1i

0 =�. The recursive formulas are,

a11
u = a11

u−1 − a1i
u−1ql

u�a1i
u−1�†,

a1i
u = − a1i

u−1ql
u� , �A6�

ql
u = ��A�1+u

1+u − �†ql
u−1��−1,

where ql
u=0. The desired solutions are a11=a11

j−3 and a1i

=a1i
j−3. ann and ank are obtained through a similar set of re-

cursive formulas. We began with the initialization ann
0 = �A�n

n

and ank
0 =�†. The recursive formulas are,

ann
u = ann

u−1 − ank
u−1qr

u�ank
u−1�†,

ank
u = − ank

u−1qr
u�†, �A7�

qr
u = ��A�n−u

n−u − �qr
u−1�†�−1,

where qr
u=0. The desired solutions are ann=ann

n−j−2 and ank

=ank
n−j−2. Performing the recursive procedure in Eqs.

τ τ
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FIG. 7. Schematic on a graphene ribbon with armchair edges.
Each slice of supercell consist of an intracell interaction denoted by
� and a right/left neighboring-cell interaction represented by � /�†,
respectively.
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�A4�–�A7�, one can then obtain the full information of the

matrix Ā.
We are now ready to compute the charge and current den-

sity for the supercell j. The key quantity is the electron cor-
relation function given by,

Gn = G�
in�G†,

where 
in=
s
in+
d

in are known as the in-scattering self-
energies. It is given by,


s/d
in = ifs/d�
s/d − 
s/d

† � , �A8�

where fs/d are the Fermi occupation factor in the source and
drain contacts.

The key concepts in recursive solution of G can now be
employed to solve Eq. �A3�. Specifically, we only require the
solution to gjj, gjn, gkn, gj1, and gk1 for reasons that would be
apparent later. We would need the following recursive for-
mulas:

�G�q
q = �q − �q�A�q+1

q �G�q
q+1,

�G�q+r
q = − �q�A�q+1

q �G�q+r
q+1, �A9�

�v+1 = ��Ā�v+1
v+1 − �Ā�v

v+1�v�Ā�v+1
v �−1,

where �0=0 and it yields us �5=gnn. We can then arrive at
the following results:

gkn = − �4�Ā�5
4gnn,

gjn = − �3�Ā�4
3gkn,

gkk = �4 − �4�Ā�5
4gkn

T ,
�A10�

gjj = �3 − �3�Ā�4
3��3�Ā�4

3gkk�T,

gj1 = �− 1�2��1�Ā�2
1�2�Ā�3

2gjj�T,

gk1 = �− 1�3��1�Ā�2
1�2�Ā�3

2�3�Ā�4
3gkk�T.

With these block elements information of G, we are now
ready to compute the charge and current density.

We are interested in the electron density, n�r�, of the su-
percell j given by,

�Gn� j
j = �G�1

j �
s
in�1

1�G†� j
1 + �G�n

j �
d
in�n

n�G†� j
n

= gj1�
s
in�1

1gj1
† + gjn�
d

in�n
ngjn

† , �A11�

where we had make use of the fact that 
s/d
in are nonzero only

for j=1,n slices, respectively. The current density, j�r�,
flowing between the supercell j and j+1 is computed via,

j�r� =
2q

h
��A� j+1

j �Gn� j
j+1 − �A� j

j+1�Gn� j+1
j � , �A12�

where

�Gn� j
j+1 = �G�1

j+1�
s
in�1

1�G†� j
1 + �G�n

j+1�
d
in�n

n�G†� j
n

= gk1�
s
in�1

1gj1
† + gkn�
d

in�n
ngjn

† , �A13�

�Gn� j+1
j = �G�1

j �
s
in�1

1�G†� j+1
1 + �G�n

j �
d
in�n

n�G†� j+1
n

= gj1�
s
in�1

1gk1
† + gjn�
d

in�n
ngkn

† . �A14�

Therefore, we have completed our procedure in computing
the charge and current density for the supercell j. At any
time, our numerical procedure only requires direct matrix
inversion of size ns�ns, where ns is the number of basis
functions in a supercell. By parallelizing the computations,
we can compute the charge and current density for any num-
ber of supercells within the device domain. In our work, we
had computed for a dozens of supercell to give us the re-
quired spatial resolution of the charge and current density
related graphical plots in the main paper.

APPENDIX B: MODE RESOLVED CONTACT
SELF-ENERGY

The mode-to-mode transmission function, Tmn, is a useful
quantity for analyzing the transport effects in the modal
space in the presence of device nonhomogeneities �see, e.g.,
Ref. 26�. It is given by Tmn=Tr��s,mG�d,nG†�, where m /n
denotes the modes in the source/drain contacts, respectively.
�s/d are known as the contacts’ broadening functions which
can be obtained from 
s/d for each respective modes in the
contacts, i.e., �s/d= i2 Im�
s/d�. This appendix describe the
procedure in obtaining the mode resolved contact self-energy

s,m in armchair edge graphene ribbon.

In armchair ribbon, the analytical solutions of the wave
function and energy dispersion is known analytically.32 One
could construct a unitary operator V which perform the trans-
formation from real space to mode space. Zhao and Guo33

outlined the recipe for doing so. For mode m, its propagation
along the lattice chain could be described by an on-site and
coupling matrix � and �, respectively,

� = �
0 �m 0 0

�m 0 tc 0

0 tc 0 �m

0 0 �m 0

 � = �

0 0 0 0

0 0 0 0

0 0 0 0

tc 0 0 0

 , �B1�

where �m=2tc cos�m� / �2L+1��, L being the number of car-
bon layers along the width direction. In the paper, the angu-
lar representation for mode m is given by �m=sin−1��tc
−�m� /� f�. The self-energy for the semi-infinite leads of this
lattice chain is denoted by �m and could be computed rather
inexpensively via the usual technique described in Ref. 22 or
analytically as discussed in Ref. 33. Finally, the real-space
form of the mode-resolved self-energy is given by,


s,m = V��m � Im�V†, �B2�

where V is a ns�ns unitary matrix, whose elements values
are assigned as described in Ref. 33. Im is a ns /4�ns /4
matrix with elements given by Im�i , j�=�i,m� j,m. 
s,m is there-
fore of size ns�ns. To ensure that the procedure is correct,
we check the following sum rule:


s = 
s,1 + 
s,2 + 
s,3 + ¯ . �B3�

This completes the objective of this appendix.
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